52,271 research outputs found

    Wages, productivity, and work intensity in the Great Depression

    Get PDF
    We show that U.S. manufacturing wages during the Great Depression were importantlydetermined by forces on firms' intensive margins. Short-run changes in work intensity and the longer-term goal of restoring full potential productivity combined to influence real wage growth. By contrast, the external effects of unemployment and replacement rates had much less impact. Empirical work is undertaken against the background of an efficient bargaining model that embraces employment, hours of work and work intensity

    A mid-Archaean ophiolite complex, Barberton Mountain land

    Get PDF
    New field observations and structurally restored geologic sections through the southern part of 3.5-3.6 Ga Barberton greenstone belt show that its mafic to ultramafic rocks form a pseudostratigraphy comparable to that of Phanerozoic ophiolites; this ancient ophiolite is referred to as the Jamestown ophiolite complex. It consists of an intrusive-extrusive mafic-ultramafic section, underlain by a high-temperature tectono-metamorphic residual peridotitic base, and is capped by a chert-shale sequence which it locally intrudes. Geochemical data support an ophiolitic comparison. Fraction of high temperature melting PGE's 2500 C in the residual rocks suggest a lower mantle origin for the precursors of this crust. An oceanic rather than arc-related crustal section can be inferred from the absence of contemporaneous andesites. The entire simatic section has also been chemically altered during its formation by hyrothermal interaction with the Archean hydrosphere. The most primitive parent liquids, from which the extrusive sequence evolved, may have been picritic in character. Rocks with a komatiitic chemistry may have been derived during crystal accumulation from picrite-crystal mushes (predominantly olivine-clinopyroxene) and/or by metasomatism during one or more subsequent episodes of hydration-dehydration. The Jamestown ophiolite complex provides the oldest record with evidence for the formation of oceanic lithosphere at constructive tectonic boundaries

    Theoretical and experimental studies in support of the geophysical fluid flow experiment

    Get PDF
    Computer programming was completed for digital acquisition of temperature and velocity data generated by the Geophysical Fluid Flow Cell (GFFC) during the upcoming Spacelab 3 mission. A set of scenarios was developed which covers basic electro-hydrodynamic instability, highly supercritical convection with isothermal boundaries, convection with imposed thermal forcing, and some stably stratified runs to look at large-scale thermohaline ocean circulations. The extent to which the GFFC experimental results apply to more complicated circumstances within the Sun or giant planets was assessed

    Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions

    Get PDF
    Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres

    Evaluation of BACB30BG and BACB30BH bolts

    Get PDF
    Qualification testing of BACB30BG and BACB30BH BOLTS for use on Saturn S-IC stag

    Test of BACN10EL nutplate

    Get PDF
    Qualification test of BACN10EL self-locking nut plate used on Saturn S-I

    Studies of earth simulation experiments

    Get PDF
    The low gravity environment of earth orbit offers the potential for performing experiments involving baroclinic Geophysical Fluid Dynamics (GFD) on spherical surfaces. These experiments in turn have the potential for providing deeper understanding of large scale planetary and solar circulations. However, to perform these experiments, one requires an experimental technique whereby a radially directed body force can be generated to simulate a radial gravitational force field. One viable technique is the use of dielectric fluids with temperature dependent dielectric permittivity in a radially directed electric field. Application of the Boussinesq approximation to the equations of motion for this system and restrictions on the size of certain electrodynamic terms in the energy equations yields a set of equations which are analogous to the equations of motions of geophysical systems like the earth's atmosphere on term by term basis. The theoretical design of GFD experiments for performance in earth orbit are described along with results of preliminary tests of a prototype

    Integration of overseas-trained doctors into the Australian medical workforce

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included. See page 7 of PDF for this item.Linsey S Hart, Jane Vernon-Robert

    Search Heuristics, Case-Based Reasoning and Software Project Effort Prediction

    Get PDF
    This paper reports on the use of search techniques to help optimise a case-based reasoning (CBR) system for predicting software project effort. A major problem, common to ML techniques in general, has been dealing with large numbers of case features, some of which can hinder the prediction process. Unfortunately searching for the optimal feature subset is a combinatorial problem and therefore NP-hard. This paper examines the use of random searching, hill climbing and forward sequential selection (FSS) to tackle this problem. Results from examining a set of real software project data show that even random searching was better than using all available for features (average error 35.6% rather than 50.8%). Hill climbing and FSS both produced results substantially better than the random search (15.3 and 13.1% respectively), but FSS was more computationally efficient. Providing a description of the fitness landscape of a problem along with search results is a step towards the classification of search problems and their assignment to optimum search techniques. This paper attempts to describe the fitness landscape of this problem by combining the results from random searches and hill climbing, as well as using multi-dimensional scaling to aid visualisation. Amongst other findings, the visualisation results suggest that some form of heuristic-based initialisation might prove useful for this problem

    Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment.

    Get PDF
    As 3D interfaces, and in particular virtual environments, become increasingly realistic there is a need to investigate the location and configuration of information resources, as distributed in the humancomputer system, to support any required activities. It is important for the designer of 3D interfaces to be aware of information resource availability and distribution when considering issues such as cognitive load on the user. This paper explores how a model of distributed resources can support the design of alternative aids to virtual environment wayfinding with varying levels of cognitive load. The wayfinding aids have been implemented and evaluated in a desktop virtual environment
    • …
    corecore